Low－Cost，144MHz，Dual／Triple Op Amps with $\pm 15 k V$ ESD Protection

General Description

The MAX4030E／MAX4031E unity－gain stable op amps combine high－speed performance，rail－to－rail outputs， and $\pm 15 \mathrm{kV}$ ESD protection．Targeted for applications where an input or an output is exposed to the outside world，such as video and communications，these devices are compliant with International ESD Standards：$\pm 15 \mathrm{kV}$ IEC 1000－4－2 Air－Gap Discharge， $\pm 8 \mathrm{kV}$ IEC 1000－4－2 Contact Discharge，and the $\pm 15 \mathrm{kV}$ Human Body Model．
The MAX4030E／MAX4031E operate from a single 5V supply and consume only 12 mA of quiescent supply current per amplifier while achieving a $144 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth， 20 MHz 0.1 dB gain flatness，and a $115 \mathrm{~V} / \mu \mathrm{s}$ slew rate．The MAX4031E provides individual shutdown control for each of the amplifiers．
The dual MAX4030E is available in 8－pin μ MAX and SO packages，and the triple MAX4031E is available in 14－ pin TSSOP and SO packages．All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range．

Applications

Set－Top Boxes
Standard Definition
Television（SDTV）
Enhanced Television （ETV）
High－Definition Television（HDTV）

Notebooks
Projectors
Security Video Systems
Camcorders
Digital Still Cameras Portable DVD Players

Ordering Information

PART	TEMP RANGE	PIN－PACKAGE
MAX4030EEUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX4030EESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX4031EEUD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 TSSOP
MAX4031EESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO

Typical Operating Circuit

Low-Cost, 144MHz, Dual/Triple Op Amps with $\pm 15 k V$ ESD Protection

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND, unless otherwise noted.)
VCC. \qquad
IN_-, IN_+, OUT_, SHDN_ \qquad -0.3 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Current into IN_-, IN_+, SHDN. \qquad $\ldots \pm 20 \mathrm{~mA}$
Output Short-Circuit Duration to VCC or GND ... Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) \qquad 8-Pin μ MAX (derate $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) .362 mW
8 -Pin SO (derate $5.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) .471 mW

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{C M}=0 \mathrm{~V}\right.$, $\mathrm{VOUT}_{-}=\mathrm{V}_{C C} / 2, \overline{S H D N_{-}}=\mathrm{V}_{C C}, R_{L}=\infty$ to $\mathrm{V}_{C C} / 2, T_{A}=T_{M I N}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

Low-Cost, 144MHz, Dual/Triple Op Amps with $\pm 15 k V$ ESD Protection

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~V}_{C M}=0 \mathrm{~V}, \mathrm{~V}_{O U T}=\mathrm{V}_{C C} / 2, \overline{S H D N_{-}}=\mathrm{V}_{C C}, R_{L}=\infty\right.$ to $\mathrm{V}_{C C} / 2, T_{A}=T_{M I N}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Disabled Output Leakage Current	Iout_SH	$\overline{\text { SHDN_ }}=$ GND (MAX4031E)	0.1	10	$\mu \mathrm{A}$
ESD Protection Voltage (Note 2)		Human Body Model	± 15		kV
		IEC 1000-4-2 Contact Discharge	± 8		
		IEC 1000-4-2 Air-Gap Discharge	± 15		

AC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{C M}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega\right.$ to $\mathrm{GND}, \overline{\mathrm{SHDN}}=\mathrm{V}_{C C}, \mathrm{AVCL}_{-}=+2 \mathrm{~V} / \mathrm{V}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Small-Signal -3dB Bandwidth	BWSS	$\mathrm{V}_{\text {OUT }}=100 \mathrm{mV} \mathrm{P}_{-\mathrm{P}}$, AvCL $=+1 \mathrm{~V} / \mathrm{V}$	144		MHz
		$\mathrm{V}_{\text {OUT_ }}=100 \mathrm{mV} \mathrm{P}_{- \text {P, }}$, AvCL $=+2 \mathrm{~V} / \mathrm{V}$	53		
Large-Signal -3dB Bandwidth	BWLS	Vout_ $=2 \mathrm{VP-P}, \mathrm{AVCL}^{\text {a }}$ + $1 \mathrm{~V} / \mathrm{N}$	52		MHz
		Vout_ $=2 \mathrm{~V}_{\text {P-P, }}$ AVCL $=+2 \mathrm{~V} / \mathrm{V}$	40		
Small-Signal 0.1dB Gain Flatness	BW0.1dBSS	$\mathrm{V}_{\text {OUT_ }}=100 \mathrm{mV} \mathrm{P}_{-\mathrm{P},}$ AvCL $=+1 \mathrm{~V} / \mathrm{V}$	20		MHz
		$V_{\text {OUT_ }}=100 \mathrm{mV} \mathrm{P}_{-\mathrm{P},}$, AvCL $=+2 \mathrm{~V} / \mathrm{V}$	10		
Large-Signal 0.1dB Gain Flatness	BW0.1dBLS	$\mathrm{V}_{\text {OUT }}=2 \mathrm{VPP}_{\text {P-P, }} \mathrm{AVCL}^{\text {a }}$ + $1 \mathrm{~V} / \mathrm{V}$	20		MHz
		Vout_ $=2 \mathrm{~V}_{\text {P-P, }}$ AVCL $=+2 \mathrm{~V} / \mathrm{V}$	9		
Slew Rate	SR	Vout_ = 2 V step	15		V/us
Settling Time to 0.1\%	ts	Vout_ = 2V step	40		ns
Channel-to-Channel Isolation	$\mathrm{CH}_{\text {ISO }}$	$\mathrm{f}=4.43 \mathrm{MHz}$	65		dB
Differential Phase Error	DP	NTSC, RL $=150 \Omega$ to GND, AvCL $=+2 \mathrm{~V} / \mathrm{V}$	0.2		Degrees
Differential Gain Error	DG	NTSC, RL $=150 \Omega$ to GND, AvCL $=+2 \mathrm{~V} / \mathrm{V}$	0.2		\%
Input Capacitance	CIN		8		pF
Capacitive-Load Stability		No sustained oscillations	200		pF
Output Impedance	ZOUT	$\mathrm{f}=4.43 \mathrm{MHz}$	2		Ω
Enable Time	ton	$\mathrm{V}_{1 \mathrm{~N}_{-}}=1 \mathrm{~V}$ (MAX4031E)	2		$\mu \mathrm{s}$
Disable Time	toff	$\mathrm{VIN}_{-}=1 \mathrm{~V}$ (MAX4031E)	0.15		$\mu \mathrm{s}$

Note 1: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over temperature limits are guaranteed by design.
Note 2: ESD protection is specified for test point A and test point B only (Figure 7).

Low-Cost, 144MHz, Dual/Triple Op Amps with $\pm 15 k V$ ESD Protection

```
(VCC = 5V, VCM = 1.5V, AVCL= +2V/V, RL= 150\Omega to VCC/2, TA = +25*'C, unless otherwise noted.)
```


LARGE-SIGNAL GAIN FLATNESS

LARGE-SIGNAL GAIN vs. FREQUENCY

OUTPUT IMPEDANCE vs. FREQUENCY

COMMON-MODE REJECTION
vs. FREQUENCY

SMALL-SIGNAL GAIN FLATNESS
vs. FREQUENCY

DISTORTION vs. FREQUENCY

POWER-SUPPLY REJECTION vs. FREQUENCY

Low-Cost, 144MHz, Dual/Triple Op Amps with $\pm 15 k V$ ESD Protection

Typical Operating Characteristics (continued)
$\left(V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{AVCL}^{2}=+2 \mathrm{~V} / \mathrm{V}, \mathrm{R}_{\mathrm{L}}=150 \Omega\right.$ to $\mathrm{V}_{\mathrm{C}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

SMALL-SIGNAL PULSE RESPONSE

LARGE-SIGNAL PULSE RESPONSE

ISOLATION RESISTANCE
vs. CAPACITIVE LOAD

CROSSTALK vs. FREQUENCY

Low-Cost, 144MHz, Dual/Triple Op Amps with $\pm 15 k V$ ESD Protection

Pin Description

PIN		NAME	FUNCTION	
MAX4030E	MAX4031E			
1	7	OUTA	Amplifier A Output	
2	6	INA-	Amplifier A Inverting Input	
3	5	INA+	Amplifier A Noninverting Input	
4	11	GND	Ground	
5	10	INB+	Amplifier B Noninverting Input	
6	9	INB-	Amplifier B Inverting Input	
7	8	OUTB	Amplifier B Output	
8	4	VCC	Positive Power Supply. Bypass VCC to GND with a 0.1 1 F capacitor.	
-	1	$\overline{\text { SHDNA }}$	Amplifier A Shutdown Input. Connect SHDNA high to enable amplifier A.	
-	2	$\overline{\text { SHDNC }}$	Amplifier C Shutdown Input. Connect $\overline{\text { SHDNC }}$ high to enable amplifier C.	
-	3	$\overline{\text { SHDNB }}$	Amplifier B Shutdown Input. Connect $\overline{\text { SHDNB high to enable amplifier B. }}$	
-	12	INC+	Amplifier C Noninverting Input	
-	13	INC-	Amplifier C Inverting Input	
-	14	OUTC	Amplifier C Output	

Detailed Description

The MAX4030E/MAX4031E dual/triple, 5V operational amplifiers achieve $115 \mathrm{~V} / \mu$ s slew rates and 144 MHz bandwidths. High $\pm 15 \mathrm{kV}$ ESD protection at video inputs and outputs guards against unexpected discharge. Excellent harmonic distortion and differential gain/ phase performance make these amplifiers an ideal choice for a wide variety of video and RF signal-processing applications.

Ground-Sensing Inputs

The MAX4030E/MAX4031E input stage can sense com-mon-mode voltages from ground to within 2.25 V of the positive supply.

Rail-to-Rail Outputs

The MAX4030E/MAX4031E rail-to-rail outputs can swing to within 100 mV of each supply because local feedback around the output stage ensures low openloop output impedance, reducing gain sensitivity to load variations.

Shutdown (MAX4031E Only)

The MAX4031E offers individual shutdown control for each amplifier. Drive SHDN_ Iow to shut down the amplifier. In shutdown, the amplifier output impedance is high impedance.

Applications Information

Choosing Resistor Values

Unity-Gain Configuration

The MAX4030E/MAX4031E are internally compensated for unity gain. When configured for unity gain, a 24Ω resistor (RF) in series with the feedback path optimizes AC performance. This resistor improves AC response by reducing the Q of the parallel LC circuit formed by the parasitic feedback capacitance and lead inductance.

Video Line Driver

The MAX4030E/MAX4031E are low-power, voltagefeedback amplifiers featuring bandwidths up to 40 MHz and 0.1 dB gain flatness to 9 MHz . They are designed to minimize differential-gain error and differential-phase error to 0.2% and 0.2°, respectively. They have a 40 ns settling time to $0.1 \%, 110 \mathrm{~V} / \mathrm{hs}$ slew rates, and output-current-drive capability of up to 50 mA , making them ideal for driving video loads.

Inverting and Noninverting Configurations

Select the feedback (RF_{F}) and input (R_{G}) resistor values to fit the gain requirements of the application. Large resistor values increase voltage noise and interact with the amplifier's input and PC board capacitance. This can generate undesirable poles and zeros and

Low－Cost，144MHz，Dual／Triple Op Amps with $\pm 15 k V$ ESD Protection

Figure 1．Noninverting Gain Configuration

Figure 2．Inverting Gain Configuration
decrease bandwidth or cause oscillations．For exam－ ple，a noninverting gain－of－two configuration（ $R_{F}=R_{G}$ ） using $2 \mathrm{k} \Omega$ resistors，combined with 4 pF of amplifier input capacitance and 1 pF of PC board capacitance， cause a pole at 79.6 MHz ．Since this pole is within the amplifier bandwidth，it jeopardizes stability．Reducing the $2 k \Omega$ resistors to 100Ω extends the pole frequency to 1.59 GHz ，but could limit output swing by adding 200Ω in parallel with the amplifier＇s load resistor （Figures 1 and 2）．

Layout and Power－Supply Bypassing

These amplifiers operate from a single 5V power sup－ ply．Bypass VCC to ground with a $0.1 \mu \mathrm{~F}$ capacitor as close to VCC as possible．Maxim recommends using microstrip and stripline techniques to obtain full band－ width．To ensure that the PC board does not degrade the amplifier＇s performance，design it for a frequency greater than 1 GHz ．Pay careful attention to inputs and outputs to avoid large parasitic capacitance．Under all conditions observe the following design guidelines：
－Do not use wire－wrap boards．Wire－wrap boards are too inductive．
－Do not use IC sockets．Sockets increase parasitic capacitance and inductance．
－Use surface mount instead of through－hole compo－ nents for better high－frequency performance．
－Use a PC board with at least two layers．The PC board should be as free from voids as possible．
－Keep signal lines as short and as straight as possi－ ble．Do not make 90° turns；round all corners．

Output Capacitive Loading and Stability The MAX4030E／MAX4031E are optimized for AC perfor－ mance and do not drive highly reactive loads，which decreases phase margin and can produce excessive ringing and oscillation．Figure 3 shows a circuit modifi－ cation that uses an isolation resistor（RISO）to eliminate this problem．Figure 4 shows a graph of the Optimal Isolation Resistor（RISO）vs．Capacitive Load．Figure 5 shows how a capacitive load causes excessive peak－ ing of the amplifier＇s frequency response if the capaci－ tor is not isolated from the amplifier by a resistor．A small isolation resistor（usually 10Ω to 15Ω ）placed before the reactive load prevents ringing and oscilla－ tion．At higher capacitive loads，the interaction of the load capacitance and the isolation resistor controls the AC performance．Figure 6 shows the effect of a 10Ω isolation resistor on closed－loop response．

ESD Protection

As with all Maxim devices，ESD protection structures are incorporated on all pins to protect against ESD encountered during handling and assembly．Input and output pins of the MAX4030E／MAX4031E have extra protection against static electricity．Maxim＇s engineers have developed state－of－the－art structures enabling these pins to withstand ESD up to $\pm 15 \mathrm{kV}$ without dam－ age when placed in the test circuit（Figure 7）．The MAX4030E／MAX4031E are characterized for protection to the following limits：
－$\pm 15 \mathrm{kV}$ using the Human Body Model
－$\quad \pm 8 \mathrm{kV}$ using the Contact Discharge method speci－ fied in IEC 1000－4－2
－$\pm 15 \mathrm{kV}$ using the Air－Gap Discharge method speci－ fied in IEC 1000－4－2

Figure 3．Driving a Capacitive Load Through an Isolation Resistor

Low-Cost, 144MHz, Dual/Triple Op Amps with $\pm 15 k V$ ESD Protection

Figure 4. Isolation Resistance vs. Capacitive Load

Figure 5. Small-Signal Gain vs. Frequency with Load Capacitance and No Isolation Resistor

Human Body Model

Figure 8 shows the Human Body Model and Figure 9 shows the current waveform it generates when discharged into low impedance. This model consists of a 150 pF capacitor charged to the ESD voltage of interest, and then discharged into the test device through a $1.5 \mathrm{k} \Omega$ resistor.

Figure 6. Small-Signal Gain vs. Frequency with Load Capacitance and 10Ω Isolation Resistor

IEC 1000-4-2
The IEC 1000-4-2 standard covers ESD testing and performance of finished equipment; it does not specifically refer to ICs. The MAX4030E/MAX4031E enable the design of equipment that meets the highest level (level 4) of IEC 1000-4-2 without the need for additional ESD protection components. The major difference between tests done using the Human Body Model and IEC 1000-$4-2$ is higher peak current in IEC 1000-4-2. Because series resistance is lower in the IEC 1000-4-2 model, the ESD-withstand voltage measured to this standard is generally lower than that measured using the Human Body. Figure 10 shows the IEC 1000-4-2 model and Figure 11 shows the current waveform for the $\pm 8 \mathrm{kV}$ IEC 1000-4-2 level 4 ESD Contact Discharge test. The Air-Gap test involves approaching the device with a charged probe. The Contact Discharge method connects the probe to the device before the probe is energized.

PROCESS: BiCMOS

Low-Cost, 144MHz, Dual/Triple Op Amps with $\pm 15 k V$ ESD Protection

Figure 7. ESD Test Circuit

Figure 8. Human Body ESD Model

Figure 10. IEC 1000-4-2 ESD Test Model

Figure 11. IEC 1000-4-2 ESD Generator Current Waveform

- 11. IEC 1000-2-2 ESD Generarort

Low-Cost, 144MHz, Dual/Triple Op Amps with $\pm 15 k V$ ESD Protection

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Low-Cost, 144MHz, Dual/Triple Op Amps with $\pm 15 k V$ ESD Protection

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Low-Cost, 144MHz, Dual/Triple Op Amps with $\pm 15 k V$ ESD Protection

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

\qquad

